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Quasistatic brittle fracture in inhomogeneous media and iterated conformal maps:
Modes I, II, and III

Felipe Barra,* Anders Levermann, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel

~Received 7 May 2002; published 18 December 2002!

The method of iterated conformal maps is developed for quasistatic fracture of brittle materials, for all
modes of fracture. Previous theory, that was relevant for mode III only, is extended here to modes I and II. The
latter require the solution of the bi-Laplace rather than the Laplace equation. For all cases we can consider
quenched randomness in the brittle material itself, as well as randomness in the succession of fracture events.
While mode III calls for the advance~in time! of one analytic function, modes I and II call for the advance of
two analytic functions. This fundamental difference creates different stress distribution around the cracks. As a
result the geometric characteristics of the cracks differ, putting mode III in a different class compared to modes
I and II.
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I. INTRODUCTION

The theory of quasistatic fractures in brittle media@1–5#
calls for solving different equations depending on the mo
of fracture. In this paper we present an approach based
iterated conformal maps which can be adapted to solve
three modes of fracture~known as modes I, II, and III!, in-
cluding the effects of inhomogeneities and randomness of
brittle material itself.

Basically, the theory of fracture in brittle continuous m
dia is based on the equation of motion for an isotropic ela
body in the continuum limit@1#

r
]2u

dt2
5~l1m!“~“•u!1m¹2u. ~1!

Hereu is the field describing the displacement of each m
point from its location in an unstrained body andr is the
density. The constantsm and l are the Lame´ constants. In
terms of the displacement field the elastic strain tenso
defined as

e i j [
1

2 S ]ui

]xj
1

]uj

]xi
D . ~2!

For the development of a crack the important object is
stress tensor, which in linear elasticity is written as

s i j [ld i j (
k

ekk12me i j . ~3!

When the stress component which is tangential to the in
face of a crack exceeds a threshold valuesc , the crack can
develop. When the external load is such that the tangen
stress exceeds only slightly the threshold value, the cr
develops slowly, and one can neglect the second time de

*Present address: Department Fisica, Facultad de Ciencias F
y Matematicas, Universidad de Chile, Casilla 487-3, Santia
Chile.
1063-651X/2002/66~6!/066122~11!/$20.00 66 0661
e
on
ll

e

ic

s

is

e

r-

ial
ck
a-

tive in Eq. ~1!. This is the quasistatic limit, in which afte
each growth event one needs to recalculate the strain fiel
solving the Lame´ equation

~l1m!“~“•u!1m¹2u50. ~4!

The three ‘‘pure’’ modes of fracture that can be conside
are determined by the boundary conditions, or load, at in
ity. These are

sxx~`!50; syy~`!5s` ; sxy~`!50 ~mode I!,
~5!

sxx~`!50; syy~`!50; sxy~`!5s` ~mode II!.
~6!

We will study the fracture patterns of these two modes
two-dimensional materials. Mode III calls for a third dime
sion z, since

szy~y→6`!5s` ~mode III!. ~7!

Such an applied stress creates a displacement fielduz(x,y),
ux50, uy50 in the medium. Thus, in spite of the third d
mension, the calculation of the strain and stress tensors
main two dimensional. Nevertheless, the equations to
solved in mode III and modes I and II are different. In mo
III fracture “•u50, and the Lame´ equation reduces to
Laplace’s equation

Duz[]2uz /]x21]2uz /]y250, ~8!

and thereforeuz is the real part, Rex(z), of an analytic
function x(z),

x~z!5uz~x,y!1 i jz~x,y!, ~9!

wherez5x1 iy . The boundary conditions far from the crac
and on the crack interface can be used to find this anal
function. On the other hand, for mode I and mode II fractu
in plane elasticity one introduces@1# the Airy potential
U(x,y) such that

cas
,
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sxx5
]2U

]y2
; sxy52

]2U

]x]y
; syy5

]2U

]x2
. ~10!

The Airy potentialU solves the bi-Laplacian equation@2#

DDU~x,y!50. ~11!

The solution of the bi-Laplacian equation can be written
terms oftwo analytic functionsf(z) andh(z) as

U~x,y!5Re@ z̄w~z!1h~z!#. ~12!

This difference requires therefore a separate discussio
mode III and modes I and II.

The problem of quasistatic crack propagation is diffic
not only because it is hard to solve Eq.~4! for an arbitrarily
shaped crack. Another source of difficulty is that the eq
tion does not dictate how to propagate a crack when
stress tensor exceeds the threshold valuesc . In this paper
we consider only two-dimensional, or effectively two
dimensional~i.e, thin slabs! brittle materials inx,y. We can
then describe a crack of arbitrary shape by its interfacexW (s),
wheres is the arc length which is used to parametrize
contour. We will use the notation (t,n) to describe, respec
tively, the tangential and normal directions at any point
the two-dimensional crack interface. The literature is quite
agreement that the velocity of propagation of the crack ha
normal component which is some function ofs tt(s)2sc for
mode I and II, and ofuszt(s)u2sc for mode III. In both
casessc is a measure of the strength of the material, a
fracture occurs only if the local stress tensor at the bound
of the crack exceeds this quantity~which can also be a ran
dom function of position!. Although it is plausible that the
normal velocity will depend on the excess stress, there is
proof that this is indeed so. Moreover, there is hardly a c
sensus on what that function the excess stress might be.
simplest choice@6,7# is a linear function,

vn~s!5aDs[a„s tt~s!2sc~s!…, ~modes I, II!, ~13!

vn~s!5aDs[a„uszt~s!u2sc~s!…, ~mode III!, ~14!

whenDs>0, andvn(s)50 otherwise. Other velocity laws
are possible@9#. In our study of mode III fracture we will
examine also a quadratic and an exponential velocity law

vn~s!5a„uszt~s!u2sc~s!…2 ~mode III!, ~15!

vn~s!5ea„uszt(s)u2sc(s)… ~mode III!. ~16!

It is important to study these variants of the velocity law
ascertain the degree of universality of the geometric cha
teristics of the resulting cracks. One of our results is t
these characteristicsmay dependon the velocity law. While
this may be a disappointment from the point of view of fu
damental physics, it may help to identify the correct physi
mechanisms of fractures in different media. The lack of u
versality is even more obvious when we add quenched no
or random values ofsc(s). The geometric characteristics o
the cracks may depend on the probability distribution of r
06612
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dom values ofsc(s). Again this may give a handle on th
characterization of inhomogeneous brittle materials.

At any point in time there can be more than one posit
s on the interface for whichvn(s) does not vanish. We
choose the next growth position randomly with a probabil
proportional tovn(s) @7,8#. There we extend the crack by
fixed area of the size of the ‘‘process zone’’~and see below
for details!. This is similar to diffusion limited aggregation
~DLA ! in which a particle is grown with a probability pro
portional to the gradient of the field. One should note th
another model could be derived in which all eligible fractu
sites are grown simultaneously, growing a whole layer wh
local width isvn(s). This would be more akin to Laplacia
growth algorithms, which in general give rise to clusters in
different universality class than DLA@10,11#.

In Sec. II we discuss the growth algorithm in terms
iterated conformal maps. In Sec. III this method is applied
mode III quasistatic fracture. A preliminary report of th
method for this case was presented in Ref.@12#. In Sec. IV
we present new results including the consequences of
different velocity laws~15! and~16!, and those of quenche
randomness. We discuss the geometric properties of the
ture patterns, including issues of roughening and expone
We point out that the roughening exponents are not alw
well defined, since the fracture patterns do not have stat
ary geometric characteristics. There is an increased tend
for ramification as the fracture develops. This is reflected
an apparent increase in the roughening exponents of
backbone of the pattern. In Sec. V we discuss the theor
modes I and II fracture. Sec. VI presents the results. We
see that the fracture patterns in modes I and II are much
rough than in mode III~for the same velocity law!, in agree-
ment with the analysis of Ref.@13#. We will conclude the
paper in Sec. VII. The main conclusion is that mode III r
sults in cracks whose geometric characteristics are in a
ferent class than modes I and II. The former creates cra
that exhibit a cross over in the averaged roughening ex
nent from about 0.5 to a higher scaling exponent on
larger scales. In contrast, modes I and II create cracks
are not rough on the large scales. Quenched randomness
affect the geometry of the cracks as is exemplified and
cussed in this paper.

II. THE METHOD OF ITERATED CONFORMAL MAPS
FOR FRACTURE

The direct determination of the strain tensor for an ar
trary shaped~and evolving! crack is difficult. We therefore
proceed by turning to a mathematical complex planev, in
which the crack is forever circular and of unit radius. Ne
invoke a conformal mapz5F (n)(v) that maps the exterio
of the unit circle in the mathematical planev to the exterior
of the crack in the physical planez, aftern growth steps. The
conformal map will be univalent by construction, and we c
write its Laurent expansion in the form

F (n)~v!5F1
(n)v1F0

(n)1F21
(n) /v1F22

(n) /v21•••. ~17!

For all modes of fracture we takeF (0)(v)5v, and the it-
erative dynamics calls for the calculation of the tangen
2-2
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QUASISTATIC BRITTLE FRACTURE IN . . . PHYSICAL REVIEW E66, 066122 ~2002!
component of the stress tensor on the boundary of the cr
The arclength positions in the physical domain is mapped b
the inverse ofF (n) onto a position on the unit circlev
5exp(iu). We will be able to compute the stress tensor on
boundary of the crack in the physical domain by perform
the calculation on the unit circle. In other words we w
computes tt(u) or szt(u) on the unit circle in the math
ematical plane. The actual calculation of this componen
the stress tensor differs in modes I, II, and mode III. W
perform the calculation iteratively, taking the stress as kno
for the crack aftern21 fracture events.

In order to implement thenth cracking event according t
one of the required velocity laws~13!–~16!, we should
choose potential positions on the interface more often w
vn is larger. Consider for example the linear velocity la
~13!. We construct a probability densityP(u) on the unit
circle eiu which satisfies

P~u!5
uF8(n21)~eiu!uDs~u!Q„Ds~u!…

E
0

2p

uF8(n21)~ei ũ !uDs~ũ!Q„Ds~ũ!…dũ

, ~18!

where Q„Ds( ũ)… is the Heaviside function, and
uF8(n21)(eiu)u is simply the Jacobian of the transformatio
from mathematical to physical plane. The next growth po
tion, un in the mathematical plane, is chosen randomly w
respect to the probabilityP(u)du. At the chosen position on
the crack, i.e.z5F (n21)(eiun), we want to advance the
crack with a region whose area is the typical process zone
the material that we analyze. According to Ref.@3# the typi-
cal scale of the process zone isK2/sc

2 , whereK is a charac-
teristic fracture toughness parameter. Denoting the typ
area of the process zone byl0, we achieve growth with an
auxiliary conformal mapfln ,un

(v) that maps the unit circle

to a unit circle with a bump of arealn centered ateiun. An
example of such a map is given by@14,15#

fl,0~w!5w12aH ~11l!

2w
~11w!

3F11w1wS 11
1

w2
2

2

w

12l

11l D 1/2G21J a

~19!

fl,u~w!5eiufl,0~e2 iuw!. ~20!

Here the bump has an aspect ratioa, 0<a<1. In our work
below we usea51/2. To ensure a fixed size step in th
physical domain we choose

ln5
l0

uF (n21)8~eiun!u2
. ~21!

Finally the updated conformal mapF (n) is obtained as

F (n)~v!5F (n21)
„fln ,un

~v!…. ~22!
06612
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The recursive dynamics can be represented as iteration
the mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+ . . . +fln ,un
~v!. ~23!

Every given fracture pattern is determined completely by
random itinerary$u i% i 51

n .
We should stress at this point that this method of dev

opment of the fracture pattern is not purely based on lin
elasticity. Every growth step advances the fractured z
over an area of the order ofl0. This represents events tha
occur in the ‘‘process zone,’’ in which plastic flows are ta
ing place, and which are not within the realm of elastic
theory, linear or not. We also note that the fracture patte
shown below are the results of this iterated growth proce
and the stress field is computed again after each growth s
The deformation due to the stress field is not represente
the patterns, being an effect of second order.

III. MODE III QUASISTATIC FRACTURE

In this section we discuss how to compute the stress
sor when the load is mode III, using the method of itera
conformal maps. The first step is the determination of
boundary conditions that the analytic function~9! needs to
satisfy.

A. Boundary conditions in mode III

Far from the crack asy→6` we knowszy→s` or using
the stress-strain relationships Eq.~3! we find that uz
'@s` /m#y. Thus the analytic function must have the for

x~z!→2 i @s` /m#z as uzu→`. ~24!

Now on the boundary of the crack the normal stress v
ishes, i.e.,

05szn~s!5]nuz52] tjz . ~25!

This means thatjz is constant on the boundary. We choo
the gaugejz50, which in turn is a boundary condition mak
ing the analytic functionx(z) real on the boundary of the
crack,

x„z~s!…5x„z~s!…* . ~26!

B. The stress tensor for mode III

Following the basic strategy we consider now a circu
crack in the mathematical domain. The strain field for suc
crack is well known@2#, being the real part of the function
x (0)(v) where

x (0)~v!52 i @s` /m#~v21/v!. ~27!

This is the unique analytic function obeying the bounda
conditionsx (0)(v)→2 i @s` /m#v as uvu→`, while on the
unit circle x (0)

„exp(iu)…5x (0)
„exp(iu)…* . To find the corre-

sponding function in the physical plane is particularly ea
for mode III. Since the real part of the functionx(z) is
2-3
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BARRA, LEVERMANN, AND PROCACCIA PHYSICAL REVIEW E66, 066122 ~2002!
analytic, it satisfied Laplace’s equation automatically. W
only need to make sure that it satisfies the boundary co
tions. However, if we have a good solution in the mathem
cal plane, we need just to compose it with an analytic fu
tion that takes us from the physical to the mathemat
plane. The required analytic functionx (n)(z) is given by the
expression

FIG. 1. Upper panel: a typical mode III fracture pattern that
obtained from iterated conformal maps. What is seen is the bou
ary of the fractured zone, which is the mapping of the unit circle
the mathematical domain onto the physical domain. Notice that
pattern becomes more and more ramified as the the fracture pa
develops. This is due to the enhancement of the stress field a
tips of the growing pattern. Lower panel: the backbone of the fr
ture pattern. This is the projection onto thex-y plane of the experi-
mentally observed boundary between the two parts of the mat
that separate when the fracture pattern hits the lateral boundar

FIG. 2. h(r ) averaged over all the backbone and over 20 fr
ture patterns each of which of 10 000 fracture events. There
crossover between a scaling law with roughness exponent
60.08 to an exponent of 0.7060.05.
06612
i-
i-
-
l

x (n)~z!52 i @F1
(n)s` /m#@F (n)21~z!21/F (n)21~z!#.

~28!

~If F (n) is conformal,F (n)21 is analytic by definition!. From
this we should compute now the tangential stress tensor

szt~s!5m] tuz5m ReF]x (n)~z!

]s G
5m ReF]x (n)

„F (n)~eiu!…

]u

]u

]sG

52Re

iF 1
(n)s`

]

]u
~eiu2e2 iu!

uF8(n)~eiu!u

52s`F1
(n) cosu

uF8(n)~eiu!u
, ~29!

on the boundary. Eqs.~29! together with Eq.~23! offer an
analytic expression for the tangential stress field at any s
of the crack propagation.

IV. RESULTS FOR MODE III

A. Linear velocity law

Figure 1 exhibits in the upper panel a typical fractu
pattern that is obtained with this theory, withs`51, after
10 000 growth events. The threshold value ofsc for the oc-
currence of the first event@cf. Eq. ~29!# is sc52. We always
implement the first event. For the next growth event t
threshold ofsc is 2.34315•••. We thus display in Fig. 1 a
cluster obtained withsc52.00, to be close to the quasistat
limit. Note that here we could opt to represent a disorde
material by a random value ofsc , and see Sec. IV C. With
fixed sc , one should observe that as the pattern develo
the stress at the active zone increases, and we get pro
sively away from the quasistatic limit. One could perform
different calculation, relaxing the stress at infinity such as
keep the growth close to threshold. But with fixed bounda
conditions at infinity, there are more and more values ou
for which Eq.~18! does not prohibit growth. Since the tips o
the patterns are mapped byF (n)21 to larger and larger arcs
on the unit circle, the support of the probabilityP(u) in-
creases, and the fracture pattern becomes more and
ramified as the process advances. The geometric charac
tics of the fracture pattern arenot invariant to the growth. For
this reason it makes little sense to measure the fractal dim
sion of the pattern; this is not a stable characteristic, an
will change with the growth. On the other hand, we shou
realize that the fracture pattern is not what is observed
typical experiments. When the fracture hits the boundarie
the sample, and the sample breaks into two parts, all
side-branches of the pattern remain hidden in the dama
material, and only the backbone of the fracture pattern
pears as the surface of the broken parts. In the lower pan
Fig. 1 we show the backbone of the pattern displayed in
upper panel.
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QUASISTATIC BRITTLE FRACTURE IN . . . PHYSICAL REVIEW E66, 066122 ~2002!
This backbone is the representative of all the fracture p
terns with the linear velocity law. We should note that in o
theory there are no lateral boundaries, and the backb
shown does not suffer from finite size effects which m
very well exist in experimental realizations.

In determining the roughness exponent of the backbo
we should note that a close examination of it reveals thatit is
not a graph. There are overhangs in this backbone, and si
we deal with mode III fracturing, the two pieces of mater
can separate leaving these overhangs intact. Accordin
one should not approach the roughness exponent using
relation function techniques; these may introduce serious
rors when overhangs exist@16#. Rather, we should measur
for any givenr, the quantity@17#

h~r ![^max$y~r 8!%x,r 8,x1r2min$y~r 8%x,r 8,x1r&x .
~30!

The roughness exponentz is then obtained from

h~r !;r z, ~31!

if this relation holds. To get good statistics we average,
addition to allx for the same backbone, over many fractu
patterns. The result of the analysis is shown in Fig. 2.

We find that the roughness exponent for the backb
exhibits a clear crossover from about 0.5 for shorter d
tancesr to about 0.70 for larger distances. Within the err
bars these results are in a surprising agreement with the n
bers quoted experimentally, see for example, Ref.@17#. The
short length scale exponent of order 0.5 is also in agreem

FIG. 3. Upper panel: fracture pattern for mode III fracture w
the quadratic law~15!, with 10 000 fracture events. Lower pane
the backbone of the pattern.
06612
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with recent simulational results of a lattice model@18#
~which is by definition a short length scale solution!.
Bouchaud@17# proposed that the crossover stems from tra
sition between slow and rapid fracture, from the ‘‘vicinity o
the depinning transition’’ to the ‘‘moving phase’’ in he
terms. Obviously, in our theory we solve the quasista
equation all along, and there is no change of physics.
addition, there is no reason to expect the experiment to b
pure mode III, and as we will see below modes I and II
not show similar roughening. Nevertheless, as we obser
before, the fracture pattern begins with very low ramificati
when the stress field exceeds the threshold value only at
positions on the fracture interface. Later it evolves to a mu
more ramified pattern due to the increase of the stress fi

FIG. 4. Upper panel: fracture pattern for mode III fracture w
the exponential law~16!, with a50.1, with 10 000 fracture events
Lower panel: the backbone of the pattern.

FIG. 5. Fracture pattern for mode III fracture with the expone
tial law ~16!, with a51, with 10 000 fracture events. In this cas
the fracture pattern and the backbone are the same.
2-5
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BARRA, LEVERMANN, AND PROCACCIA PHYSICAL REVIEW E66, 066122 ~2002!
at the tips of the mature pattern.The scaling properties of the
backbone reflect this crossover. We propose that this effect i
responsible for the crossover in the roughening exponen
the backbone. On the other hand, this nonstationarity in
geometric characteristics should be handled with care, s
it may mean that there is no definite roughening exponen
it may depend onwherethe analysis is done, near the cen
of the fracture patterns or near the edge. We will return
this delicate issue after reviewing the results of other velo
laws.

B. Other velocity laws

It should be stressed that there is no reason to believe
the scaling exponents are invariant to the change of the
locity law. In Figs. 3, 4, and 5 we show the fracture patte
and their corresponding backbones for the quadratic velo
law ~15! and for two different exponential laws~16!. We find
that the quadratic law makes little difference with respec
the linear law. The roughening plot is similar, and the scal
exponents appear the same. The exponential velocity

FIG. 6. h(r ) averaged over 20 fracture patterns with the exp
nential velocity law witha51. Each of the patterns consists
10 000 fracture events. There is a cross over between a scaling
with roughness exponent of about 0.50 at short length scales t
apparent scaling exponent of about 0.78.

FIG. 7. h(r ) averaged over 20 fracture patterns with the exp
nential velocity law witha51. In this calculation we concentrat
on parts of the pattern shown in Fig. 5, one near the center and
other near the edge, each consisting ofr 52000. The apparent ex
ponents differ, being 0.71 at the center and 0.85 near the edge
average behavior with exponent 0.78 seen in Fig. 6 should there
be interpreted with extra care.
06612
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changes the degree of ramification, and therefore calls f
careful discussion of the roughening plots. Examine
function h(r ) for the pattern in Fig.~5! ~see Fig. 6!. While
the small scale roughening exponent of about 0.5 is rep
duced, it appears that the large scale exponent is now hig
about 0.78. The question to be asked therefore is whethe
scaling exponent is not invariant to the velocity law. In o
opinion this question is ill posed since the scaling expon
itself depends on where is it measured. As we said before,
the fracture pattern tends to become more ramified a
grows. This is reflected in the roughening properties.
make this point clearer, we have taken the pattern of Fig. 5
a test case, and computed the apparent scaling exponen
short parts of the fracture pattern, limiting the maximal val
of r to 2000. By doing so, we can concentrate on a reg
near the center of the pattern, and on a region near the e
The results of this exercise are presented in Fig. 7 Wha
found is that the apparent scaling exponent depends on
region of measurements. Near the center, where the patte
less ramified, the exponent is smaller than near the e
where the pattern is more ramified. The average expon
reported in Fig. 6 which is analogous to what is reported
experiments, has therefore a limited value. It may not
interpreted as a ‘‘true’’ scaling exponents. Its value may w
depend on the actual length of the pattern that is investiga

We are therefore not in a position to claim that the cor
spondence in roughening exponents between the linear
and experiments indicates anything about universa
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FIG. 8. Upper panel: fracture pattern for mode III fracture w
the linear velocity law and quenched randomness with a flat dis
bution, smax515, with 10 000 fracture events. Lower panel: th
function h(r ) after averaging over 20 patterns. The scaling exp
nents are about 0.4 and 0.65 for the smaller and larger scales
spectively.
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QUASISTATIC BRITTLE FRACTURE IN . . . PHYSICAL REVIEW E66, 066122 ~2002!
classes. One needs to ascertain very carefully whether m
sured roughening exponents indicate translationally invar
scaling properties. It is in particular useful to know wheth
the observed scaling exponents depends on the length o
available fracture pattern.

C. Quenched disorder

To study the effect of quenched randomness we assiga
priori a random valuesc to every point in the material~with
resolutionl0). Not having a clear indication from the litera
ture how the randomness of inhomogeneous media shou
modeled, we opted for two types of quenched randomn
The first takes the numerical value ofsc(s) from a flat dis-
tribution, 0<sc<smax and the second takes a power-la
form

P~sc!}sc
2b for sc.smin. ~32!

For reasonable values ofsmax the flat distribution did not
lead to a qualitative change in the fracture patterns. In Fi
we show the pattern and the functionh(r ) for the case
smax515. The typical crossover that we see in syste
without quenched disorder remains here, albeit with app
ently smaller exponents, of about 0.4 and 0.65.

On the other hand, a power-law distribution of quench
randomness may lead to very interesting qualitative cha
in fracture pattern. While high values ofb in Eq. ~32! are
still in qualitative agreement with all previous results~see
Fig. 9 withb52), lower values ofb lead to a new phenom

FIG. 9. Upper panel: Fracture pattern for mode III fracture w
the linear velocity law and quenched randomness with a power
distribution, b52,smin52, with 10 000 fracture events. Lowe
panel: the functionh(r ) after averaging over 20 patterns. The sc
ing exponent is about 0.65.
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enon. The availability of very high values ofsc results in
effective blocking for the evolution of the fracture. The cra
develops along continuous~sometime curved! lines, and then
it suddenly gains sharp turns. In Fig. 10 we show the typi
patterns obtained forb51.1. It is amusing to note that thes
patterns are reminiscent of what is exhibited in a numbe
experiments and see, for example, the pictures in Ref.@17#. It
is not obvious, however, how to offer quantitative measu
for comparison. It appears to the present authors that
subject of fracture with quenched randomness deserve
careful separate study in which experimental and theoret
methods were combined to gain further insights on the qu
tions at hand.

V. THEORY FOR MODES I AND II

In order to compute the stress tensor at the boundar
the crack for modes I and II loading, we turn to the soluti
of Eq. ~11!. Since we employ conformal techniques, we a
limited to solving Eq.~11! in two-dimensions. Although we
realize that three-dimensional solutions may introduce ad
tional physics and quantitative changes@13#, we trust that a
controlled solutions of Eq.~11! in two-dimensions will shed
useful light on the questions of crack geometry, rougheni
and scaling.

A. Boundary conditions and removal of freedoms

The boundary conditions at infinity are given by Eqs.~5!
and ~6!. The conditions on the boundary of the crack are

sxn~s!5syn~s!50 on the boundary. ~33!

Using Eq.~10! these boundary condition are rewritten as

] tF]U

]x
1 i

]U

]y G50 on the boundary. ~34!

Note that we do not have enough boundary conditions
determineU(x,y) uniquely. In fact we can allow in Eq.~12!
arbitrary transformations of the form

w→w1 iCz1g, ~35!

w

FIG. 10. Fracture pattern for mode III fracture with the line
velocity law and quenched randomness with a power-law distri
tion, b51.1,smin50.2.
2-7
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c→c1g̃, c[h8, ~36!

whereC is a real constant andg and g̃ are complex con-
stants. This provides five degrees of freedom in the defini
of the Airy potential. Two of these freedoms are removed
choosing the gauge in Eq.~34! according to

]U

]x
1 i

]U

]y
50 on the boundary. ~37!

It is important to stress that whatever the choice of the fi
freedoms the values of the stress tensor are unaffected
see Ref.@2# for an exhaustive discussion of this point. Com
puting Eq.~37! in terms of Eq.~12! we arrive at the bound
ary condition

w~z!1zw8~z!1c~z!50 on the boundary. ~38!

To proceed we representw(z) andc(z) in Laurent form.

w~z!5w1z1w01w21 /z1w22 /z21•••,

c~z!5c1z1c01c21 /z1c22 /z21•••. ~39!

This form is in agreement with the boundary conditions
infinity that disallow higher-order terms inz. The remaining
freedoms are now used to choosew050 andw1 real. Then,
using the boundary conditions~5! and ~6!, we find

w15
s`

4
; c15

s`

2
mode I,

w150; c15 is` mode II. ~40!

B. The conformal map and its consequences

The conformal map is identical in form and meaning
the one introduced above and successfully applied to m
III. On the other hand, at present we do not solve the Lapl
equation, and our fundamental solution~12! is not the real
part of an analytic function. We thus cannot simply solve
the mathematical plane and compose with the inverse of
conformal map.

In terms of the conformal map we will write our unknow
functionsw(z) andc(z) as

w~z![w̃„F (n)21~z!…, c~z![c̃„F (n)21~z!…. ~41!

Using the Laurent form~17! of the conformal map the linea
term atv→` is determined by Eqs.~41!. We therefore can
write

w̃~v!5w1F1
(n)v1w̃21 /v1w̃22 /v21•••,

c̃~v!5c1F1
(n)v1c̃01c̃21 /v1c̃22 /v21•••. ~42!

The boundary condition~38! is now read for the unit circle in
the v plane. Denotinge[ exp(iu) and
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u~e![ (
n51

`

w̃2n /en, v~e![ (
n50

`

c̃2n /en, ~43!

we write

u~e!1
F (n)~e!

F8(n)~e!
u8~e!1v~e!5 f ~e!. ~44!

The functionf is a known function that contains all the co
efficients that were determined so far,

f ~e!52w1F1
(n)e2

F (n)~e!

F8(n)~e!
w1F1

(n)2
c1F1

(n)

e
. ~45!

C. Solution by power series

To solve the problem we need to compute the coefficie
w̃n and c̃n . To this aim we first represent

F (n)~e!

F8(n)~e!
5(

2`

`

bie
i . ~46!

The functionf (s) has also an expansion of the form

f ~e!5(
2`

`

f ie
i . ~47!

In the discussion below we assume that the coefficientsbi
and f i are known. In fact what is computed in our procedu
is the conformal mapF (n)(v). Thus to compute these coe
ficients we need to Fourier transform the functio

F (n)(e)/F8(n)(e). This is the most expensive step in o
solution, since the branch cuts that exist in Eq.~19! rule out
the use of fast Fourier transforms. One needs to caref
evaluate the Fourier integrals between the branch cuts.
technique how to track the position of the branch cuts on
unit circle was developed in Refs.@10,11#; after having the
branch cuts the integrals are evaluated over 1000 equi-dis
points between each pair of branch cuts. Using the last
equations together with Eqs.~43! and ~44! we get

w̃2m2 (
k51

`

k b2m2k21w̃2k* 5 f 2m , m51,2, . . . , ~48!

c̃2m* 2 (
k51

`

k bm2k21w̃2k* 5 f m , m50,1,2, . . . . ~49!

These sets of linear equations are well posed. The co
cientsw̃2m can be calculated from Eq.~48! alone, and then
they can be used to determine the coefficientsc̃2m . This is
in fact proof that Eq.~44! determines the functionsu andv
together. This fact had been proven with some generality
Ref. @2#.

For cracks with simple geometry this is all that we nee
For example for a circular crack~a problem that was explic
2-8
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itly solved in Ref. @2#! we simply substituteF (n)(v)
5F (0)(v)5v, and proceed to solve forw̃ and c̃, finding
finally

w̃~v!5w1v2
c1*

v
, c̃~v!5c1v22

w1

v
2

c1*

v3
. ~50!

For developing cracks of arbitrary shape this is just the st
ing point. As before in the solution of mode III we need
computes tt from which we construct the probability mea
sure for the first fracture event. The development of theF (n)

then follows the same lines as before.
To computes tt at the boundary of the crack we use t

fact that follows directly from the definitions that

sxx1syy54 Re@w8~z!#54 ReF w̃8~v!

F8(n)~v!
G . ~51!

Since this is the trace of the stress tensor, which is invar
under smooth coordinate transformation, it is also equa
snn1s tt . Using the fact thatsnn vanishes on the boundar
we can write finally

s tt~e!54 ReF w̃8~e!

F8(n)~e!
G . ~52!

This result is of some importance; it shows that to comp
the components tt of the stress tensoron the boundarywe do
not need to computec̃(e) at all. Of course, to know the
stress tensor anywhere else in the body we need both f
tions. For the growth algorithm this is not necessary. We n
that w̃ is computed from Eqs.~48!, and this contains onlybm
with negativem. In order to derive a numerical scheme
compute the tangent stress components tt on the crack we
now truncate the series forw̃ to get an approximation

u~e!' (
n51

N

w̃2n /en. ~53!

We see from Eq.~48! that if we wish to compute this serie
up to an orderN, we need to compute the coefficientsb2 j up
to j <2N11 and then solve the linear system~48!. Note that
the approximation in Eq.~53! corresponds to a truncation o
the series~46! which in turn corresponds to a truncation
the conformal mapF (n). Since we are interested in the ma
roscopic stress distribution along the fracture rather than
the bumpy microstructure, this effect is of no harm as long
we chooseN large enough to resolve the desired patterns

VI. RESULTS FOR MODES I AND II

A. Geometry without quenched disorder

The actual fracture patterns that we find for modes I a
II are dramatically different from those found for mode I
for the same velocity law. In Fig. 11 we show the fractu
patterns for the linear velocity law after about 800 fractu
events. First, modes I and II are very similar, except for
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obvious 45° tilt in mode II due to the tilt of the symmetr
axis of the loading. The highly ramified structure seen
mode III is gone, and the resulting patterns are more akin
the exponential velocity law in mode III, cf. Fig. 5. Th
roughening ploth(r ) ~Fig. 12! is also qualitatively different
from mode III with the same velocity law. We do not obser
a crossover to a higher exponent, indicating that there is
increased roughening at large scales. Indeed, for these m
of fracture the stress field is found to be very highly peak
at the tip of the fracture pattern. Moreover, when there
pear deviations towards side branching they are quickly c
rected in later growth. To make this point clearer we pres
in Fig. 13 the stress field at the boundary of the crack in
vicinity of the tip. One can observe that the stress compon
is such that the slight tilt of the tip will be corrected at th

FIG. 11. Upper panel: fracture pattern for mode I with the line
velocity law. Lower panel: fracture pattern for mode II with th
linear velocity law.

FIG. 12. The functionh(r ) for mode I fracture, averaged ove
11 fracture patterns. The line indicates a slope of 0.5.
2-9
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next growth event. We therefore do not expect large sc
roughening in this mode of fracture.

We should note that similarity in the crack geometries
modes I and II stems from the fact that we distinguish th
two modes only by boundary conditions at infinity. Witho
material anisotropy the crack of mode II chooses an orie
tion of 45°, rendering the local dynamics at the interfa
identical to mode I, except for the tilt. At present we do n
see how to select boundary conditions that load the cr
locally in mode II. This phenomenon is related to the s
called ‘‘principle of local symmetry’’@19# that underlines the
preference of cracks to maximize their mode I loading at
expense of mode II.

B. The effect of quenched disorder

Last, we present cracks with quenched disorder. First
followed the growth of a crack in mode I, using the sam
strategy of Sec. IV C. In Fig. 14 we show, for example, t
crack obtained withsc taken from a flat distribution with
smax510. Contrary to the case of mode III the effect
quenched disorder on the roughening is not impressive.

FIG. 13. The stress field at the boundary of the crack in
vicinity of the tip.

FIG. 14. The fracture pattern in the case of quenched disor
with sc taken from a flat distribution. The pattern is similar to th
in Fig. 11, with the same roughening behavior.
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roughening exponent is still about 0.5 for small scales, w
a failure to roughen on the large scales. This finding rema
invariant to change the type of quenched disorder to a po
law like Eq. ~32!. We also do not observe roughening on t
large scales when we put quenched disorder, and grow d
ministically at the point of highest value ofs tt2sc .

VII. CONCLUDING REMARKS

We have presented a solution of the problem quasist
fracture using the method of iterated conformal map.
modes of fracture can be treated, although mode III is m
more straightforward since the equation to be solved is
Laplace equation. The bi-Laplacian equation that is involv
in modes I and II requires heavier analysis and more cu
bersome numerics. Notwithstanding, we believe that
fracture patterns represent accurate solutions of the prob
with the stated laws of evolution.

The geometric characteristics of mode III are differe
from those of modes I and II. The fracture pattern is ve
ramified, and if we look at the backbone,~which is what is
observed as the boundary between the two parts of the
ken material!, we find that it is rough on all scales. O
smaller scales the roughening exponent is about 0.5, an
larger scales the roughening increases, having an ave
roughening exponent which depends on the length of
fracture pattern analyzed. The exponent 0.5 is intimately
lated to the randomness that is introduced by our gro
rules. the higher apparent exponents are due to the incre
ramification on the larger scales as is explained in Sec.
The roughening plots may appear to be in close agreem
with some experimental observations, which however are
conducted as mode III. Experimentally one expects t
modes I and II are more relevant, but here we do not obse
the crossover to roughness characterized by exponents o
order of 0.75. Quite on the opposite, it appears that
roughness saturates, leading to a globally flat fracture
terns on the large scales.

This leaves us with the question of how to interpret t
observed roughness in experiments. One possibility is
experiments are not quasistatic, or that in experiments
material has remnant stresses and other sources of quen
disorder. This is the spirit for example of Ref.@20# ~and
references therein! in which the crossover is tentatively re
lated to damage cavity coalescence. Such possibilities ca
put to test. Indeed, we find that mode III is very sensitive
quenched disorder, cf. Sec. IV C. With power-law disord
we can change the geometric characteristic of the frac
patterns altogether. This is not the case, however, with mo
I and II, where the priority of the tip in attracting the stre
field is overwhelming. These cracks do not appear
roughen on the large scales even with quenched disorde

In summary, we believe that the experimental obser
tions pose an interesting riddle whose resolution will nee
careful assessment of the experimental conditions and t
inclusion in the theory. It is our hope that the solution pr
sented above will turn out to be a useful tool in achievi
this goal.
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