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Quasistatic brittle fracture in inhomogeneous media and iterated conformal maps:
Modes |, II, and 1lI

Felipe Barrd; Anders Levermann, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
(Received 7 May 2002; published 18 December 2002

The method of iterated conformal maps is developed for quasistatic fracture of brittle materials, for all
modes of fracture. Previous theory, that was relevant for mode Ill only, is extended here to modes | and Il. The
latter require the solution of the bi-Laplace rather than the Laplace equation. For all cases we can consider
guenched randomness in the brittle material itself, as well as randomness in the succession of fracture events.
While mode 1l calls for the advandgn time) of one analytic function, modes | and Il call for the advance of
two analytic functions. This fundamental difference creates different stress distribution around the cracks. As a
result the geometric characteristics of the cracks differ, putting mode Il in a different class compared to modes
I and I1.
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[. INTRODUCTION tive in Eq. (1). This is the quasistatic limit, in which after
each growth event one needs to recalculate the strain field by

The theory of quasistatic fractures in brittle meftla-5]  solving the Lameequation
calls for solving different equations depending on the mode
of fracture. In this paper we present an approach based on (A +p)V(V-u)+uV2u=0. (4)
iterated conformal maps which can be adapted to solve all ]
three modes of fracturé&nown as modes I, Il, and I in- The three ‘jpure” modes of fracture thqt can be conS|d.en_'-3d
cluding the effects of inhomogeneities and randomness of tha'e determined by the boundary conditions, or load, at infin-
brittle material itself. ity. These are

Basically, the theory of fracture in brittle continuous me-

dia is based on the equation of motion for an isotropic elastic 7xxX(®)=0i  0yy(*®)=0=;  0%(*)=0 (mode),

body in the continuum limif1] )
éu ox(©)=0; 0oy (©)=0; oy (®)=0, (modell.
poz =W V(Y )+ uVRu (1) (6)

We will study the fracture patterns of these two modes in
Hereu is the field describing the displacement of each masswo-dimensional materials. Mode Il calls for a third dimen-
point from its location in an unstrained body apdis the  sjonz since
density. The constanta and\ are the Lameconstants. In

terms of the displacement field the elastic strain tensor is o, (y—*®)=0, (mode ll). )
defined as
Such an applied stress creates a displacementigidy),
_1fdu  dy; 5 uy=0, u,=0 in the medium. Thus, in spite of the third di-
€i=2 (9_xj+ ax; )’ @ mension, the calculation of the strain and stress tensors re-

_ o main two dimensional. Nevertheless, the equations to be
For the development of a crack the important object is thesolved in mode Il and modes | and Il are different. In mode
stress tensor, which in linear elasticity is written as Il fracture V-u=0, and the Lameequation reduces to
Laplace’s equation

L=NS, +oue .
i =A ”; CiT SALE ® Au,=d%u,/9x?+ 9%u,l 9y?=0, (8

When the stress component which is tangential to the interand thereforeu, is the real part, Rey(z), of an analytic
face of a crack exceeds a threshold vadye the crack can  function y(z2),
develop. When the external load is such that the tangential
stress exceeds only slightly the threshold value, the crack X(2)=u,(X,y) +i&,(X,y), 9
develops slowly, and one can neglect the second time deriva-
wherez=x+iy. The boundary conditions far from the crack
and on the crack interface can be used to find this analytic
*Present address: Department Fisica, Facultad de Ciencias Fisichgnction. On the other hand, for mode | and mode Il fractures
y Matematicas, Universidad de Chile, Casilla 487-3, Santiagojn plane elasticity one introducefsl] the Airy potential
Chile. U(x,y) such that
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52U 52U 52U dom values ofo¢(s). Again this may give a handle on the
Txx= 55 Oxy= T ooui OyyT - (100  characterization of inhomogeneous brittle materials.
ay Xoy X At any point in time there can be more than one position
s on the interface for whictv,(s) does not vanish. We
choose the next growth position randomly with a probability
AAU(x,y)=0. (11)  Proportional tov,(s) [7,8]. There we extend the crack by a
fixed area of the size of the “process zonghd see below
The solution of the bi-Laplacian equation can be written infor detailg. This is similar to diffusion limited aggregation

The Airy potentialU solves the bi-Laplacian equati¢g]

terms oftwo analytic functionse(z) and 5(z) as (DLA) in which a particle is grown with a probability pro-
. portional to the gradient of the field. One should note that
U(x,y)=Rd ze(2)+ 5(z)]. (12 another model could be derived in which all eligible fracture

o . _ ~ sites are grown simultaneously, growing a whole layer whose
This difference requires therefore a separate discussion ®hcal width isv,(s). This would be more akin to Laplacian

mode Il and modes | and II. growth algorithms, which in general give rise to clusters in a
The problem of quasistatic crack propagation is difficultdifferent universality class than DLALO,11).
not only because it is hard to solve Ed) for an arbitrarily In Sec. Il we discuss the growth algorithm in terms of

shaped crack. Another source of difficulty is that the equaiterated conformal maps. In Sec. Il this method is applied to
tion does not dictate how to propagate a crack when thenode Il quasistatic fracture. A preliminary report of the
stress tensor exceeds the threshold vatye In this paper method for this case was presented in R&2]. In Sec. IV
we consider only two-dimensional, or effectively two- we present new results including the consequences of the
dimensionali.e, thin slabs brittle materials inx,y. We can  different velocity laws(15) and(16), and those of quenched
then describe a crack of arbitrary shape by its interfgs}, randomness. We discuss the geometric properties of the frac-
wheres is the arc length which is used to parametrize theture patterns, including issues of roughening and exponents.
contour. We will use the notatiort,f) to describe, respec- We point out that the roughening exponents are not always
tively, the tangential and normal directions at any point onwell defined, since the fracture patterns do not have station-
the two-dimensional crack interface. The literature is quite inary geometric characteristics. There is an increased tendency
agreement that the velocity of propagation of the crack has or ramification as the fracture develops. This is reflected in
normal component which is some function®gf(s) — o, for ~ an apparent increase in the roughening exponents of the
mode | and I, and ofo,(S)|— o for mode IIl. In both  backbone of the pattern. In Sec. V we discuss the theory of
caseso, is a measure of the strength of the material, andnodes | and Il fracture. Sec. VI presents the results. We will
fracture occurs only if the local stress tensor at the boundargee that the fracture patterns in modes | and Il are much less
of the crack exceeds this quantitywhich can also be a ran- rough than in mode Il{for the same velocity layy in agree-
dom function of position Although it is plausible that the ment with the analysis of Ref13]. We will conclude the
normal velocity will depend on the excess stress, there is npaper in Sec. VII. The main conclusion is that mode IlI re-
proof that this is indeed so. Moreover, there is hardly a consults in cracks whose geometric characteristics are in a dif-
sensus on what that function the excess stress might be. Therent class than modes | and Il. The former creates cracks
simplest choicg6,7] is a linear function, that exhibit a cross over in the averaged roughening expo-
nent from about 0.5 to a higher scaling exponent on the
vn(s)=alAo=a(oy(s)—o.(s)), (modesl, l), (13) Ilarger scales. In contrast, modes | and Il create cracks that
are not rough on the large scales. Quenched randomness may
vn(s)=alo=a(o,(s)|—oc(s)), (modell), (14  affect the geometry of the cracks as is exemplified and dis-
, , cussed in this paper.
whenAo=0, andv,(s)=0 otherwise. Other velocity laws

are possiblg9]. In our study of mode Il fracture we will Il THE METHOD OF ITERATED CONFORMAL MAPS
examine also a quadratic and an exponential velocity law ' FOR FRACTURE

un(s)=a(|o,(s)|—0o(s))* (modell), (15 The direct determination of the strain tensor for an arbi-
a9 —oels) trary shapedand evolving crack is difficult. We therefore
vn(s)=e®7ze¥im e (mode I1)). (1) proceed by turning to a mathematical complex planein

_ . . which the crack is forever circular and of unit radius. Next
It is important to study these variants of the velocity law 10, voke a conformal mag=® () that maps the exterior
asgertaln the degree .Of universality of the geometric gharacdf the unit circle in the mathematical plaaeto the exterior
teristics of the resulting cracks. One of our results is thalé)f the crack in the physical plare aftern growth steps. The

:E?Ss;;h%rstge;ilzgmg% ?nfgre]pg)c:‘nmﬁevegﬁ[[t%fl?/\?év\v/v;"ﬁj n- conformal map will be univalent by construction, and we can
y bp P write its Laurent expansion in the form

damental physics, it may help to identify the correct physical
mechanisms of fractures in different media. The lack of uni- PN (0)=FVo+FMW+FMN/w+F"/ w2+ ... (17)
versality is even more obvious when we add quenched noise,

or random values ofr,(s). The geometric characteristics of For all modes of fracture we tak&(®)(w)=w, and the it-
the cracks may depend on the probability distribution of ran-erative dynamics calls for the calculation of the tangential
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component of the stress tensor on the boundary of the crack. The recursive dynamics can be represented as iterations of
The arclength posmosm the physical domain is mapped by the mape, 4 (w),

the inverse of®(™ onto a position on the unit circle

=exp(6d). We will be able to compute the stress tensor on the O (w)= Dry.0,°Pry.0,° - 0PN, 0 (@) (23
boundary of the crack in the physical domain by performing

the calculation on the unit circle. In other words we will Every given fracture pattern is determined completely by the
computeay(6) or o,(6) on the unit circle in the math- random itinerary{ 6;}{_, .

ematical plane. The actual calculation of this component of \We should stress at this point that this method of devel-

the stress tensor differs in modes I, I, and mode Ill. Weopment of the fracture pattern is not purely based on linear
perform the calculation iteratively, taking the stress as knowre|asticity. Every growth step advances the fractured zone
for the crack aften—1 fracture events. over an area of the order afy. This represents events that

In order to implement thath cracking event according to occur in the “process zone,” in which plastic flows are tak-
one of the required velocity law$13)—(16), we should ing place, and which are not within the realm of elasticity
choose potential positions on the interface more often whegheory, linear or not. We also note that the fracture patterns
v, is larger. Consider for example the linear velocity law shown below are the results of this iterated growth process,
(13). We construct a probability densiti?(#) on the unit  and the stress field is computed again after each growth step.
circle '? which satisfies The deformation due to the stress field is not represented in

1 s the patterns, being an effect of second order.
O’ MDD Ac(0)O(AT(6
P(6) 27|T (€)]Ac(0)O(Aa(0)) 19

f |CDr(n*l)(eﬁ))|Ag’(~é)®(AO'(ﬁé))d’é
0

III. MODE IlIl QUASISTATIC FRACTURE

In this section we discuss how to compute the stress ten-
_ sor when the load is mode I, using the method of iterated
where O®(Ao(6)) is the Heaviside function, and conformal maps. The first step is the determination of the
| ("=1(e'%)| is simply the Jacobian of the transformation boundary conditions that the analytic functié® needs to
from mathematical to physical plane. The next growth posisatisfy.
tion, 6, in the mathematical plane, is chosen randomly with
respect to the probabilit?(e)da. At the chosen position on A. Boundary conditions in mode III
the crack, i.e.z=®(" " Y(e'%), we want to advance the
crack with a region whose area is the typical process zone foF1
the material that we analyze. According to Re¥] the typi-
cal scale of the process zoneké/ o2, whereK is a charac-
teristic fracture toughness parameter. Denoting the typical
area of the process zone hy,, we achieve growth with an
auxiliary conformal mapp, 4 (w) that maps the unit circle Now on the boundary of the crack the normal stress van-
to a unit circle with a bump of arem, centered age'’. An ishes, i.e.,
example of such a map is given py4,15

Far from the crack ag— * < we knowo,,— o, Or using
e stress-strain relationships E3) we find that u,
~[o.,./u]y. Thus the analytic function must have the form

x(2)——i[o./u]z as|z|—o. (24)

0=0,n(S)=dpu,= — 6;&;. (25
(1+N) . )
Hrow)=w"? (1+w) This means that, is constant on the boundary. We choose
2w the gauget,=0, which in turn is a boundary condition mak-
1 213\ a ing the analytic functiony(z) real on the boundary of the
il B crack,
X|1+w+w 1+W2 Wl+)\) ]
x(2(s))= x(z(s))*. (26)
(19
by (,(W)=e”’¢)\ O(e_”’w). (20) B. The stress tensor for mode Il

_ Following the basic strategy we consider now a circular
Here the bump has an aspect raidd<a=1. In our work  crack in the mathematical domain. The strain field for such a
below we usea=1/2. To ensure a fixed size step in the crack is well known[2], being the real part of the function

physical domain we choose x9(w) where
o XO(w)=—i[o./u](0—1lw). (27
(N=1)r(nibp) (2" (2D L . . . .
P (e'm] This is the unique analytic function obeying the boundary
_ _ _ conditionsy©(w)— —i[o../u]w as|w|—o, while on the
Finally the updated conformal map(™ is obtained as unit circle x©(exp(6))= x®(exp(6))*. To find the corre-
-1 sponding function in the physical plane is particularly easy
oV (w) =" )(d)}‘n'(}n((v))' (22 for mode III. Since the real part of the functiop(z) is
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T T T T T T T xM(2)=—i[FMo. I u][®M2)— DM~ L(2)].
500 - (28
I ] (If ®M is conformal ® (M~ is analytic by definition From
v ol 1 this we should compute now the tangential stress tensor,
I ax™(z)
s ] 02((S) = pdU,= pu RE ————
-500_— ' - ax(”)(¢>(”)(ei9)) 96
S s “HRETTG s
X
: —— , q .
L i e (n) _ (plb_—if
sool ] ) iFy 0-00(90(6 e 'Y
: | @ (e
I ] cosé
Yor e =20, F{"———, (29)
, I | (M (el)]
I 1 on the boundary. Eqg29) together with Eq.(23) offer an
->00r ] analytic expression for the tangential stress field at any stage
B R — e of the crack propagation.

X

FIG. 1. Upper panel: a typical mode Il fracture pattern that is IV RESULTS FOR MODE 1l

obtained from iterated conformal maps. What is seen is the bound- A. Linear velocity law
ary of the fractured zone, which is the mapping of the unit circle in . o .
the mathematical domain onto the physical domain. Notice that the Figure 1 eXh'b'tS, in th? upper panel a'typ|cal fracture
pattern becomes more and more ramified as the the fracture patteRa{tern that is obtained with this theory, with.=1, after
develops. This is due to the enhancement of the stress field at the? 000 growth events. The threshold valueogffor the oc-
tips of the growing pattern. Lower panel: the backbone of the fraccurrence of the first evefief. Eq.(29)] is o.=2. We always
ture pattern. This is the projection onto tke plane of the experi- implement the first event. For the next growth event the
mentally observed boundary between the two parts of the materighreshold ofo. is 2.34315- .. We thus display in Fig. 1 a
that separate when the fracture pattern hits the lateral boundariescluster obtained witlo.=2.00, to be close to the quasistatic
limit. Note that here we could opt to represent a disordered

analytic, it satisfied Laplace’s equation automatically. WemMaterial by a random value ef, and see Sec. IV C. With
only need to make sure that it satisfies the boundary condfix€d ¢, one should observe that as the pattern develops,
tions. However, if we have a good solution in the mathematin€ Stress at the active zone increases, and we get progres-
cal plane, we need just to compose it with an analytic funcSively away from the quasistatic limit. One could perform a
tion that takes us from the physical to the mathematicaflifferent calculation, relaxing the stress at infinity such as to

plane. The required analytic functig™(z) is given by the keep the growth close to threshold. But with fixed boundary
expression conditions at infinity, there are more and more valued of

for which Eq.(18) does not prohibit growth. Since the tips of
the patterns are mapped W™ ! to larger and larger arcs
on the unit circle, the support of the probabiliB(6) in-
creases, and the fracture pattern becomes more and more
ramified as the process advances. The geometric characteris-
tics of the fracture pattern aretinvariant to the growth. For
this reason it makes little sense to measure the fractal dimen-
sion of the pattern; this is not a stable characteristic, and it
will change with the growth. On the other hand, we should
realize that the fracture pattern is not what is observed in
typical experiments. When the fracture hits the boundaries of
1 10 100 1000 the sample, and the sample breaks into two parts, all the
side-branches of the pattern remain hidden in the damaged
FIG. 2. h(r) averaged over all the backbone and over 20 frac-material, and only the backbone of the fracture pattern ap-
ture patterns each of which of 10000 fracture events. There is R€ars as the surface of the broken parts. In the lower panel of
crossover between a scaling law with roughness exponent 0.46ig. 1 we show the backbone of the pattern displayed in the
+0.08 to an exponent of 0.700.05. upper panel.

100

h(r)
10
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This backbone is the representative of all the fracture pat-
terns with the linear velocity law. We should note that in our
theory there are no lateral boundaries, and the backbone
shown does not suffer from finite size effects which may
very well exist in experimental realizations.

In determining the roughness exponent of the backbone,
we should note that a close examination of it revealsithat
not a graph There are overhangs in this backbone, and since
we deal with mode Il fracturing, the two pieces of material
can separate leaving these overhangs intact. Accordingly,
one should not approach the roughness exponent using cor-
relation function techniques; these may introduce serious er-
rors when overhangs exigt6]. Rather, we should measure,
for any givenr, the quantity{17]

h(r)z(max{y(r "Vx<rr<x+r—min{y(r ,}x<r’<x+r>x-

The roughness exponetitis then obtained from

PHYSICAL REVIEW BE56, 066122 (2002

if this relation holds. To get good statistics we average, in
addition to allx for the same backbone, over many fracture
patterns. The result of the analysis is shown in Fig. 2.

h(r)~ré¢,

1
0 200
X
T T T
200+ E
y O—MW/\'\’\-—\»:
200} 4

) 1 . 1 ) ]
-200 0 200
X

We find that the roughness exponent for the backbone FiG. 4. Upper panel: fracture pattern for mode 11l fracture with
exhibits a clear crossover from about 0.5 for shorter disthe exponential law16), with a=0.1, with 10 000 fracture events.
tancesr to about 0.70 for larger distances. Within the error Lower panel: the backbone of the pattern.
bars these results are in a surprising agreement with the num-

bers quoted experimentally, see for example, RET]. The

with recent simulational results of a lattice modgl8]

short length scale exponent of order 0.5 is also in agreemer@vhich is by definiton a short length scale solution

Bouchaud 17] proposed that the crossover stems from tran-

T sition between slow and rapid fracture, from the “vicinity of
1000 i the depinning transition” to the “moving phase” in her
terms. Obviously, in our theory we solve the quasistatic
I T equation all along, and there is no change of physics. In
y O_W_ addition, there is no reason to expect the experiment to be a
pure mode lll, and as we will see below modes | and Il do
not show similar roughening. Nevertheless, as we observed
T i before, the fracture pattern begins with very low ramification
when the stress field exceeds the threshold value only at few
N T T positions on the fracture interface. Later it evolves to a much
-looo - 0 1000 more ramified pattern due to the increase of the stress fields
T T T : : : : :
1000} . 5000 .
Y OF e e r
yo -
-1000} .
1 L 1 1 1 1 -5000- b
1000 0 1000

FIG. 3. Upper panel: fracture pattern for mode Il fracture with

o o+ v v
-5000 0 5000

X

FIG. 5. Fracture pattern for mode Il fracture with the exponen-

the quadratic law(15), with 10 000 fracture events. Lower panel: tial law (16), with =1, with 10000 fracture events. In this case
the backbone of the pattern.

the fracture pattern and the backbone are the same.
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FIG. 6. h(r) averaged over 20 fracture patterns with the expo-
nential velocity law witha=1. Each of the patterns consists of
10 000 fracture events. There is a cross over between a scaling law 100
with roughness exponent of about 0.50 at short length scales to an :
apparent scaling exponent of about 0.78. [
h(r)
at the tips of the mature patteffihe scaling properties of the 10f
backbone reflect this crossové¥e propose that this effect is
responsible for the crossover in the roughening exponent of
the backbone. On the other hand, this nonstationarity in the
geometric characteristics should be handled with care, since T T R TY'v
it may mean that there is no definite roughening exponent, as
it may depend onvherethe analysis is done, near the center
of the fracture patterns or near the edge. We will return LTI
this delicate issue after reviewing the results of other veloci%
laws.

-

FIG. 8. Upper panel: fracture pattern for mode Il fracture with
linear velocity law and quenched randomness with a flat distri-
ution, o,a,= 15, with 10000 fracture events. Lower panel: the
function h(r) after averaging over 20 patterns. The scaling expo-
nents are about 0.4 and 0.65 for the smaller and larger scales, re-

B. Other velocity laws spectively.

It should be stressed that there is no reason to believe thghanges the degree of ramification, and therefore calls for a
the scaling exponents are invariant to the change of the vesareful discussion of the roughening plots. Examine the
locity law. In Figs. 3, 4, and 5 we show the fracture patternsfunction h(r) for the pattern in Fig(5) (see Fig. 6. While
and their corresponding backbones for the quadratic velocitthe small scale roughening exponent of about 0.5 is repro-
law (15) and for two different exponential lawd6). We find  duced, it appears that the large scale exponent is now higher,
that the quadratic law makes little difference with respect toabout 0.78. The question to be asked therefore is whether the
the linear law. The roughening plot is similar, and the scalingscaling exponent is not invariant to the velocity law. In our
exponents appear the same. The exponential velocity lawpinion this question is ill posed since the scaling exponent

itself depends on where is it measures we said before,
T the fracture pattern tends to become more ramified as it
100} £ grows. This is reflected in the roughening properties. To
E *] make this point clearer, we have taken the pattern of Fig. 5 as
ha) | ] a test case, and computed the apparent scaling exponents for

- short parts of the fracture pattern, limiting the maximal value

10k 4 of r to 2000. By doing so, we can concentrate on a region
: ] near the center of the pattern, and on a region near the edge.
P ] The results of this exercise are presented in Fig. 7 What is
RN ] found is that the apparent scaling exponent depends on the
k- . ] region of measurements. Near the center, where the pattern is
10 100 1000 less ramified, the exponent is smaller than near the edge
r where the pattern is more ramified. The average exponent

FIG. 7. h(r) averaged over 20 fracture patterns with the expo-re€ported in Fig. 6 which is analogous to what is reported in
nential velocity law witha=1. In this calculation we concentrate €Xperiments, has therefore a limited value. It may not be
on parts of the pattern shown in Fig. 5, one near the center and tHgterpreted as a “true” scaling exponents. Its value may well
other near the edge, each consisting f2000. The apparent ex- depend on the actual length of the pattern that is investigated.
ponents differ, being 0.71 at the center and 0.85 near the edge. The We are therefore not in a position to claim that the corre-
average behavior with exponent 0.78 seen in Fig. 6 should thereforgpondence in roughening exponents between the linear law
be interpreted with extra care. and experiments indicates anything about universality
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weF T T] T T T T ]
L ] 50001 ]

-5000 3

FIG. 10. Fracture pattern for mode Il fracture with the linear
velocity law and quenched randomness with a power-law distribu-
100} tion, B=1.10;,=0.2.
enon. The availability of very high values of. results in
effective blocking for the evolution of the fracture. The crack
develops along continuosometime curvedines, and then
it suddenly gains sharp turns. In Fig. 10 we show the typical
patterns obtained fgB=1.1. It is amusing to note that these
patterns are reminiscent of what is exhibited in a number of
L e 000 experiments and see, for example, the pictures in[R&f. It

r is not obvious, however, how to offer quantitative measures
FIG. 9. Upper panel: Fracture pattern for mode Il fracture with for comparison. I appears to the present authors that this
subject of fracture with quenched randomness deserves a

the linear velocity law and quenched randomness with a IC’Owe'r'l"’“'\c':arefuI separate study in which experimental and theoretical
distribution, 8=2,0,in,=2, with 10000 fracture events. Lower P y P

panel: the functiorh(r) after averaging over 20 patterns. The scal- '.“ethOdS were combined to gain further insights on the ques-
ing exponent is about 0.65. tions at hand.

h(r) |
10

classes. One needs to ascertain very carefully whether mea- V. THEORY FOR MODES | AND I

sured roughening exponents indicate translationally invariant

scaling properties. It is in particular useful to know whether In order to compute the stress tensor at the boundary of
the observed scaling exponents depends on the length of tiae crack for modes I and Il loading, we turn to the solution

available fracture pattern. of Eq. (11). Since we employ conformal techniques, we are
limited to solving Eq.(11) in two-dimensions. Although we
C. Quenched disorder realize that three-dimensional solutions may introduce addi-

~ tional physics and quantitative chandds)], we trust that a
To study the effect of quenched randomness we assign controlled solutions of Eq(11) in two-dimensions will shed

priori a random valuer. to every point in the materidvith  yseful light on the questions of crack geometry, roughening,
resolution\o). Not having a clear indication from the litera- and scaling.

ture how the randomness of inhomogeneous media should be
modeled, we opted for two types of quenched randomness.
The first takes the numerical value @f(s) from a flat dis-
tribution, O<o.<0.x and the second takes a power-law The boundary conditions at infinity are given by E¢.
form and(6). The conditions on the boundary of the crack are

A. Boundary conditions and removal of freedoms

P(og)xa? for a¢>omin (32 oxn(S)=0ayn(s)=0 on the boundary. (33

For reasonable values of,, the flat distribution did not  ysing Eq.(10) these boundary condition are rewritten as
lead to a qualitative change in the fracture patterns. In Fig. 8

we show the pattern and the functidr(r) for the case
omax=15. The typical crossover that we see in systems o
without quenched disorder remains here, albeit with appar-
ently smaller exponents, of about 0.4 and 0.65.
On the other hand, a power-law distribution of quenchedNote that we do not have enough boundary conditions to
randomness may lead to very interesting qualitative chang@etermineU(x,y) uniquely. In fact we can allow in Eq12)
in fracture pattern. While high values ¢ in Eq. (32) are  arbitrary transformations of the form
still in qualitative agreement with all previous resultee
Fig. 9 with 8=2), lower values of3 lead to a new phenom- o—@+iCz+ vy, (35

au

U
5+IW}_O on the boundary. (34
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— +~, =9, 36 - ~ - ~
oty (%9 WA= B ol v(=3, Pl @3
whereC is a real constant angt and’y are complex con-
stants. This provides five degrees of freedom in the definitionve write
of the Airy potential. Two of these freedoms are removed by

choosing the gauge in E34) according to dM(e)
u(e)+ ———=u’'(e)+v(e)=f(e). (44)
U gU ®'(M(e)
Wﬂ (9—=0 on the boundary. (37) . . . _
y The functionf is a known function that contains all the co-

It is important to stress that whatever the choice of the fiveeffICIentS that were determined so far,

freedoms the values of the stress tensor are unaffected, and dM(¢) lﬂ_F(n)

see Ref[2] for an exhaustive discussion of this point. Com- fle)=—o (M =6@ E(n _ 171 (45)
puting Eq.(37) in terms of Eq.(12) we arrive at the bound- v d'(M(e) v e

ary condition

go(z)+z—go’(z)+_¢(z)=0 on the boundary. (39) C. Solution by power series

To solve the problem we need to compute the coefficients

To proceed we represeg(z) and(z) in Laurent form. @, and i, . To this aim we first represent
P(2)=¢1ztgot ¢ 1/zte ,12%+- -, M) I
=:2 biEI. (46)
WZ)=nz+ ot 112+ 122+ (39 o' M(e) =

This form is in agreement with the boundary conditions at'ne functionf(o) has also an expansion of the form
infinity that disallow higher-order terms in The remaining -

freedoms are now used to choogg=0 and ¢, real. Then, _ i

using the boundary conditior(§) and(6), we find fle) Z‘c fie. “7)

O O In the discussion below we assume that the coefficients
¢1=7 1= model, andf; are known. In fact what is computed in our procedure
is the conformal ma@ (™ (w). Thus to compute these coef-
©1=0; ¢y=ic, modell. (40  ficients we need to Fourier transform the function

dM(€)/d'(M(€). This is the most expensive step in our
solution, since the branch cuts that exist in Etp) rule out
o o ) the use of fast Fourier transforms. One needs to carefully
The conformal map is identical in form and meaning toeyaluate the Fourier integrals between the branch cuts. The
the one introduced above and successfully applied to modgchnique how to track the position of the branch cuts on the
Il. On_ the other hand, at present we d_o not_ solve the Laplac@nit circle was developed in Reff10,11); after having the
equation, and our fundamental solutiGt®) is not the real  pranch cuts the integrals are evaluated over 1000 equi-distant
part of an analytic function. We thus cannot simply solve inpoints between each pair of branch cuts. Using the last two

the mathematical plane and compose with the inverse of thgquations together with Eq&13) and (44) we get
conformal map.

B. The conformal map and its consequences

In terms of the conformal map we will write our unknown . * _
functions¢(z) and ¥(z) as <p,m—k2 Kb_mok10*=f_m, Mm=1,2,..., (48
=1
(=@ X2), W=P@M Y(2)). (4] .
7k “k —

Using the Laurent forn17) of the conformal map the linear ‘/’*m_gl Kbn-k-16==fm, M=012,....(49
term atw— is determined by Eqg41). We therefore can

write These sets of linear equations are well posed. The coeffi-

cientsg_, can be calculated from E@48) alone, and then

they can be used to determine the coefficights,. This is
in fact proof that Eq(44) determines the functions andv

o(0)=p:F Mo+ 1 lote_slo’+- -,

W)= F Mo+ Yo+t P_lo+P_lw’+---. (42  together. This fact had been proven with some generality in
Ref.[2].
The boundary conditio(B8) is now read for the unit circle in For cracks with simple geometry this is all that we need.
the w plane. Denotings= exp(6d) and For example for a circular cradla problem that was explic-

066122-8



QUASISTATIC BRITTLE FRACTURE IN . .. PHYSICAL REVIEW BE56, 066122 (2002

ity solved in Ref. [2]) we simply substitute® (™ (w) -
=d)(w)=w, and proceed to solve fap and ¥, finding

finally 2001 T
- . e U
— _ 4 — I, R y OW—
e(@)=ero—"" Po)=yho=27- . (50
For developing cracks of arbitrary shape this is just the start- 200 -

ing point. As before in the solution of mode Ill we need to
computeo; from which we construct the probability mea-
sure for the first fracture event. The development ofd{@
then follows the same lines as before.

To computeo; at the boundary of the crack we use the T . T
fact that follows directly from the definitions that 200~ .

[l s [l L
-200 0 200

9 (w)

. 51
(Dr(n)(w) ( )

ot oyw=4Rd o' (2)]=4 R{

Since this is the trace of the stress tensor, which is invariant

under smooth coordinate transformation, it is also equal to

oant oy . Using the fact thatr,, vanishes on the boundary

we can write finally -200

' (e) 1
q)/(n)(e.) ’

I . 1 .
-200 0 200
X

ou(e)=4 Re{ (52

FIG. 11. Upper panel: fracture pattern for mode | with the linear
velocity law. Lower panel: fracture pattern for mode Il with the
This result is of some importance; it shows that to computdinear velocity law.
the component, of the stress tensan the boundaryve do

not need to computei(e) at all. Of course, to know the obvious 45° tilt in mode Il due to the tilt of the symmetry
stress tensor anywhere else in the body we need both funéxis of the loading. The highly ramified structure seen in
tions. For the growth algorithm this is not necessary. We noténode Il is gone, and the resulting patterns are more akin to
that' is computed from Eqg48), and this contains onlg,, the equnentlal veIOC|_ty Iaw_ln mode ”.I’ (.:f' F'g'. >. The
with negativem. In order to derive a numerical scheme to roughening plolj(r) (Fig. 1) is algo qualitatively different
compute the tangent stress componepton the crack we from mode Il with the same velocity law. We do not observe

h ies o o a crossover to a higher exponent, indicating that there is no
how truncate the series faf to get an approximation increased roughening at large scales. Indeed, for these modes

N of fracture the stress field is found to be very highly peaked
u(e)~ E o e (53) at the tip_ of the fracture pattern. Mqreover, when t_here ap-

n=1 pear deviations towards side branching they are quickly cor-

rected in later growth. To make this point clearer we present

We see from Eq(48) that if we wish to compute this series in Fig. 13 the stress field at the boundary of the crack in the
up to an ordeN, we need to compute the coefficielits; up  vicinity of the tip. One can observe that the stress component

to j<2N+1 and then solve the linear systé#8). Note that s such that the slight tilt of the tip will be corrected at the
the approximation in Eq53) corresponds to a truncation of

the serieg46) which in turn corresponds to a truncation of s
the conformal ma@ (™. Since we are interested in the mac-

roscopic stress distribution along the fracture rather than in
the bumpy microstructure, this effect is of no harm as long as 10}
we chooseN large enough to resolve the desired patterns. A

hoy |
VI. RESULTS FOR MODES | AND Il I

A. Geometry without quenched disorder

The actual fracture patterns that we find for modes | and
Il are dramatically different from those found for mode Il
for the same velocity law. In Fig. 11 we show the fracture
patterns for the linear velocity law after about 800 fracture FIG. 12. The functiorh(r) for mode | fracture, averaged over
events. First, modes | and Il are very similar, except for thell fracture patterns. The line indicates a slope of 0.5.
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2 I . . . . roughening exponent is still about 0.5 for small scales, with
a failure to roughen on the large scales. This finding remains
- . invariant to change the type of quenched disorder to a power
law like Eg.(32). We also do not observe roughening on the

o large scales when we put quenched disorder, and grow deter-
ministically at the point of highest value of;— o .
y VII. CONCLUDING REMARKS
ok

We have presented a solution of the problem quasistatic
fracture using the method of iterated conformal map. All
b modes of fracture can be treated, although mode Ill is much
4F i more straightforward since the equation to be solved is the
Laplace equation. The bi-Laplacian equation that is involved

! in modes | and Il requires heavier analysis and more cum-
-335 bersome numerics. Notwithstanding, we believe that our
X fracture patterns represent accurate solutions of the problem
FIG. 13. The stress field at the boundary of the crack in theW'th the stated I_aws of eVOIL_JtK.)n' .
vicinity of the tip. The geometric characteristics of mode Il are dl_fferent

from those of modes | and Il. The fracture pattern is very
ramified, and if we look at the backbon@vhich is what is

next growth event. We therefore do not expect large scale
roughening in this mode of fracture. Observed as the boundary between the two parts of the bro-

We should note that similarity in the crack geometries inken material, we find that,'t is rough on all scales. On
modes | and Il stems from the fact that we distinguish thes§Maller scales the roughening exponent is about 0.5, and on
two modes only by boundary conditions at infinity. Without !2rger scales the roughening increases, having an average
material anisotropy the crack of mode Il chooses an orientaloughening exponent which depends on the length of the
tion of 45°, rendering the local dynamics at the interfaceffacture pattern analyzed. The exponent 0.5 is intimately re-
identical to mode I, except for the tilt. At present we do notlated to the randomness that is introduced by our growth
see how to select boundary conditions that load the crackules. the higher apparent exponents are due to the increased
locally in mode II. This phenomenon is related to the so-ramification on the larger scales as is explained in Sec. IV.
called “principle of local symmetry[19] that underlines the The roughening plots may appear to be in close agreement
preference of cracks to maximize their mode | loading at thevith some experimental observations, which however are not

]
-340

expense of mode II. conducted as mode Ill. Experimentally one expects that
modes | and Il are more relevant, but here we do not observe
B. The effect of quenched disorder the crossover to roughness characterized by exponents of the

é)rder of 0.75. Quite on the opposite, it appears that the

Last, we present cracks with quenched disorder. First w .
roughness saturates, leading to a globally flat fracture pat-

followed the growth of a crack in mode I, using the same
strategy of Sec. IV C. In Fig. 14 we show, for example, the!®S on the large scales. _ _

crack obtained witho, taken from a flat distribution with This leaves us with the question of how fo interpret the
oma=10. Contrary to the case of mode Il the effect of observed roughness in experiments. One possibility is that

quenched disorder on the roughening is not impressive. TheXPeriments are not quasistatic, or that in experiments the
material has remnant stresses and other sources of quenched

disorder. This is the spirit for example of RdR0] (and
references therejnn which the crossover is tentatively re-
200} - lated to damage cavity coalescence. Such possibilities can be
put to test. Indeed, we find that mode Il is very sensitive to
guenched disorder, cf. Sec. IV C. With power-law disorder
¥ o ————— ] we can change the geometric characteristic of the fracture
patterns altogether. This is not the case, however, with modes
I and Il, where the priority of the tip in attracting the stress
field is overwhelming. These cracks do not appear to
-200[ 7 roughen on the large scales even with quenched disorder.
L In summary, we believe that the experimental observa-
-200 0 200 tions pose an interesting riddle whose resolution will need a
X careful assessment of the experimental conditions and their
FIG. 14. The fracture pattern in the case of quenched disordeinclusion in the theory. It is our hope that the solution pre-
with o, taken from a flat distribution. The pattern is similar to that sented above will turn out to be a useful tool in achieving
in Fig. 11, with the same roughening behavior. this goal.
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